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Abstract—The goal of this paper is to identify the potential of 

using neural networks for music generation. We chose the classical 

music genre as our input. Inputs were sorted by the artist; thus, 

outputs were created based on a particular artist. We used an 

encoded MIDI representation of the input and produced a single 

MIDI representation as output. Our model was set up using the 

TensorFlow library and is a recurrent neural network, consisting 

of an autoencoder and LSTM layers. We ran various epochs to 

identify the ideal training range. Our results were positive overall. 

Due to the simplicity of the input representation, the output was 

also relatively simple. However, our output exhibits a strong 

correlation to the input as well as evidence of the new music 

generation. 
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I. INTRODUCTION AND MOTIVATION 

Over the past decade, and even more so recently, there have 
been attempts to apply Artificial Intelligence (AI) in various 
fields, such as interactive artificial intelligence services or 
drawing pictures using input keywords. The results of these 
attempts have left a strong impression on people and have 
proved that AI-related technologies have advanced considerably 
in the past decade. With this in mind, we thought about the field 
of composition. As a new picture is created by learning a certain 
pattern from various pictures, we thought the same thought 
process could be applied to music composition; create a new 
song by learning a certain pattern from various songs. We 
believe that if this is possible, it could produce revolutionary 
changes in the field of music production. 

With this thought in mind, we wondered if AI could analyze 
existing songs and compose new music which would be better 
than that of human composition. Just as AI could generate high-
quality pictures, could it also generate high quality music. We 
thought it would be best to use neural networks to learn patterns 
and create new ones. In this study, we aimed to find out whether 
a song generated by a neural network could be comparable to a 
song written by a human. 

  In this project, we used a recurrent neural network (RNN) 
consisting of an autoencoder to create a model that can identify 
patterns of existing classical songs and create new classical 
songs using the patterns. With this model, we input various 
classic songs as MIDI files and output a new classical song as 

MIDI files. We tried to figure out how much the quality of songs 
produced by this model increased as we increased the number of 
epochs of this model. 

During the experiment on this project, we found that in order 
to build an effective neural network, we need to build a neural 
network model using long short-term memory (LSTM) as well 
as an autoencoder to create a MIDI file consisting of more than 
just one note. Furthermore, we found that MIDI files were 
created using more diverse notes and complex scales when using 
a larger number of epochs. 

II. RELATED WORK 

The music industry is very large and can offer life-changing 
success. This has led many people to consider the helpfulness of 
artificial intelligence pertaining to music generation. Thus, there 
was a substantial amount of related work available to us 
throughout this process. 

Johnson [7] studied the representation of MIDI files as 2D 
binary arrays. We took the most inspiration for the encoding and 
decoding of data. This simple setup allowed for a much easier 
approach to the project and allowed for more focus on the 
network itself rather than encoding and decoding data. A 
downside to this approach is the lack of complexity we were able 
to represent. Music has complex events happening almost 
constantly. This includes changing tempos, incorporating 
melodies, and many other things. This approach limits many 
elements of the piece, simply because we are only able to record 
notes. 

Eck and Schmidhuber [1] established the effectiveness of 
using Long Short-Term Memory (LSTM) units within recurrent 
neural networks. They used LSTM to train their model by 
learning the chords or melodies of a song, which allows it to 
learn and play long-form musical melodies and create stronger 
correlations across songs. We were inspired by this study on 
how to utilize LSTMs. Going further from their approach, we 
tried to build a better-trained neural network model by 
leveraging LSTM's layer count adjustment and repeat vectors. 

The use of other types of networks has also been introduced 
and tested. Gunawan, Iman, and Suhartono [4] studied the use 
of gated recurrent units (GRUs) and incorporated them into an 
artificial music generation test.  GRUs operate in a somewhat 
similar fashion to LSTMs in that they attempt to capture 
temporal qualities while avoiding the inclusion of a memory cell. 



They built their RNN model using LSTMs and GRUs, and fed 
MIDI files into the model, sorted by the era in which the songs 
were written, such as baroque, classical, and romantic. Input 
MIDI files are encoded, learned, and trained. And they evaluate 
the output of their model using accuracy. This series of 
processes has been a great inspiration for establishing our model 
construction and evaluation methods. Based on their research, 
we also incorporated elements such as autoencoder and repeat 
vector into our model and classified the input songs according 
to their composers rather than according to a specific era. 

AMT identifies pitch and models the acoustic signal for it. 
To build a more effective symbolic music prediction system 
utilizing AMT, Sigtia et al. [2] applied RNN. The resulting 
model was able to make high-level symbolic predictions and 
allowed the construction of more efficient algorithms. 

Chuang and Su [5] used RNNs for beat tracking, as opposed 
to music generations. Extract information such as namely onset 
time, offset time (or note duration), and pitch value from MIDI 
data and train it through a recurrent neural network. In this 
process, they also utilized LSTM. Compared to the previous 
models, it showed excellent beat-tracking ability, but this also 
showed limited performance. 

Yang, Chous, and Yang [9] involved using convolutional 
neural networks (CNNs) and generative adversarial networks 
(GANs). This method also produced positive results and 
allowed us to consider other designs for our network (i.e., the 
inclusion of an auto-encoder). 

Colombo et al[3] involved separating notes from melodies to 
improve the long-range quality of the music piece. They 
analyzed the pitch and duration of the song and encoded them as 
1's and 0's. The information collected in this way is learned in 
multi-layers in RNN and used for model training. They compare 
the score of the original song and the model's song, showing how 
well the model followed the original song's pattern and 
composed a new song. 

Samuel and Pilat [6] attempted the incorporation of recurrent 
neural networks with multi-instrumental music. It extracts 
meters, keys, and chords from MIDI files, processes them, and 
inputs them into the RNN model. Since they want to use a 
variety of instruments, the input values have a much more 
complex form than other studies, and the fact that each 
instrument has a small input value seems to have made the 
research difficult. Still, their neural network model generated 
well-evaluated songs. We want to extract information from the 
MIDI files of several classical songs, focusing on just one 
instrument. By doing so, it is expected that it will be simpler and 
easier to input information into our model. 

Chen and Miikkulainen[8] combined evolutionary 
algorithms and recurrent neural networks for their study. In 
their study, they used neural networks to generate melodies and 
applied evolutionary algorithms to generate better melodies. To 
apply the evolutionary algorithm, the fit function for pitch and 
rhythm was utilized. Their system worked quite well, and the 
evolutionary algorithm followed the constraints faithfully 
while generating better melodies. However, expressions such 
as dotted notes, rests, and chords were omitted from their 
results. The lack of harmony produced results that were good 

for each measure but not satisfactory for the overall 
composition. 

Sheikholharm et al [10] combined genetic algorithms and 
recurrent neural networks in their research. A fitness function 
was also applied for the utilization of genetic algorithms. They 
utilized pitches and durations of notes via genetic algorithms and 
recurrent neural networks to form new melodic passages. 
Genetic algorithms have formed crossovers and mutations, and 
these mutations include various variations such as changing 
adjacent notes, transposing octaves, inverting groups of notes, 
and changing the duration of notes. The music thus created 
forms a new form of music while still following the pattern of 
the original music. 

III. METHOD 

A. Learn from Others 

Before building a neural network model that analyzes 

various music files and outputs new music files, we read 

papers related to this topic to gain a better understanding of 

this topic and to see how others have approached it. As a 

result of reading various papers and analyzing the subject, it 

was found that there is a technique commonly used in various 

papers, and I was sure that we could create our bio-inspired 

model using this. 

From our research, we concluded that a recurrent neural 

network was the most optimal solution for our goal. This is 
because recurrent neural networks use outputs from the 

previous time step as inputs to the current time step. This is 

important because musical notes between different time steps 

always have some level of correlation. Thus, if a recurrent 

neural network can learn certain patterns, it should be able to 

generate a somewhat pleasant output. 

 

 

Fig. 1. Recurrent Neural Networks(RNNs) [4] 

Another inspiration was the use of LSTMs. These 

modules have a memory cell within them and essentially 

work in tandem with a recurrent neural network to produce a 

more connected output. Since LSTMs operate with a memory 

cell, there is some recollection of what the previous state 
was. This means an LSTM can remember its previous output 

and modify the current output accordingly. This improves the 

correlation effect and when paired with the characteristics of 

a recurrent neural network should provide a better output. 

 



 

Fig. 2. Long short-term memory (LSTM) diagram [4] 

The last piece to our network was the addition of an 

autoencoder. Autoencoders operate by compressing and 

decompressing data, allowing for both pattern recognition as 

well as generative output. These are both valuable properties 

of a music generator model because we want to produce a new 
musical piece while still having it inspired by the original input. 

 

Fig. 3. Auto-encoder diagram[11] 

We were inspired by the various models mentioned above. 
By reading various papers related to the research topic, we 

have improved our understanding of the structure of MIDI 

files and have been able to think about how our neural network 

model can utilize MIDI files. We also learned that LSTMs and 

autoencoders can be used to build more effective neural 

networks. 

B. Overall Process of Our Model 

We used Python's Mido library as our interface with 

MIDI files and the TensorFlow library to build our neural 

network. Using the Mido, Numpy, and TensorFlow libraries, 

we were able to create a simple recurrent neural network. 

TABLE I.  NUMBER OF INPUT MIDI FILES 

Name of Composers Number of MIDI Files Total Play Time 

(minutes) 

Tchaikovsky 12 37.11 

Mendelssohn 15 37.40 

Clementi 17 38.11 

Schumann 24 54.80 

Haydn 21 69.25 

Beethoven 29 182.75 

 

We wanted to input classical songs from various 

composers into the RNN model in the form of MIDI files. 

Also, we wanted to see if our neural network model can catch 

the features of each composer's songs. Therefore, we 

categorized MIDI files by composer and inputted each 

composer's MIDI file. 

This model stores information about notes and chords in 
vectors from each incoming MIDI file. The input information 

is encoded in the form of a 2D binary vector so that it can be 

used in the neural network. This encoded information is used 

to train the RNN model. 

C. First Attempt to Build a Model 

 

Fig. 4. Early Recurrent Neural Network Model 

To build our RNN model, we used Long Short-Term 

Memory (LSTM) layers. This model has the advantage of 

allowing outputs to be reused as inputs. LSTM networks can 

maintain a recollection of its past outputs, which has the 

advantage of helping to maintain the flow and rhythm of a 

song and improving the overall quality of the song. 

The neural network built in this way learns patterns from 

various MIDI files. For more effective training, the Adam 

optimizer was used. Moreover, the difference in the results 

was checked by adjusting the number of epochs which 



determines the number of recurrences. The trained neural 

network outputs a 2D binary vector, and we adjusted it to 

create a song of an appropriate length. The 2D binary vector 

output in this way is converted into a MIDI file and output as 

music that everyone can hear. 
However, our early model was not very good at finding 

patterns from MIDI files and would always output songs with 

only one note regardless of the number of epochs. 

D. Second Attempt to Build a Model 

 

Fig. 5. Improved Recurrent Neural Network Model 

 

Fig. 6. Overall Process of Creating a New MIDI File 

We recognized that we were missing an important part of 

building neural networks. Therefore, we consulted with Dr. 

Schuman to get advice to improve our neural network model. 
She recommended using an autoencoder for our neural 

network model.  

Autoencoders go through the process of compressing and 

decompressing information to learn patterns. The autoencoder 

applied to our model starts with 1000 layers, compresses to 

100 and 10 layers, and then decompresses to 100 and 1000 

layers again, learning the patterns of MIDI files. Also, we 

used Repeat Vector which repeats the input n times to add an 

extra dimension to the dataset. In our new model, we used 64 

layers of LSTM which compressed to 32 layers and 

decompressed to 64 layers. Using autoencoder, LSTM, and 
repeated vector, we could build a better recurrent neural 

network model. 

Our improved model was able to create songs using 

multiple notes rather than just one. Also, compared to the 

previous model, it analyzed patterns from input MIDIs well. 

IV. RESULTS 

A. Time to Generate a New MIDI File 

 

Fig. 7. Time Consumed by Number of Epoches in CPU and GPU 

Our model using RNN is highly influenced by the number 

of epochs, which is the number of recurrences of the neural 
network. Using TensorFlow, users can decide whether to use 

CPU or GPU when running a neural network program. There 

is a significant difference in performance depending on using 

CPU or GPU, and GPU runs a program faster than the CPU 

does in every case.  

Fig 7 shows the average time until the program is done at 

each epoch when using CPU and GPU. When the number of 

the epoch is 50, it takes an average of 94.5 minutes, or 1.5 

hours, to complete the program using the GPU, while it takes 

an average of 315 minutes, or 5.25 hours, to complete the 

program using the CPU. When the number of the epoch is 

1000, it takes an average of 301 minutes, or 5 hours, to 
complete the program using the GPU, while it takes an 

average of 6305 minutes, or 105 hours, to complete the 

program using the CPU.  

Considering the difference in running time between 50 

epochs and 1000 epochs, the execution time of the program is 

greatly affected by the number of epochs. 

 

 

Fig. 8. Time Consumed by Total Play Time of Input MIDIs in CPU and GPU 



Even if you run the program with the same number of 

epochs, the running time of the program can vary greatly 

depending on the playtime of the MIDI file, i.e., the size of the 

input files. 

Fig 8 shows the running time of each epoch depending on 
the total playtime of the input files when running the program 

using the CPU and GPU. When a MIDI file with a total 

playtime of 37 minutes is input into the program, each epoch 

takes 150 seconds, or 2 minutes 30 minutes, using the CPU and 

9.5 seconds for each epoch using the GPU. When a MIDI file 

with a total playtime of 182.75 minutes is input into the 

program, each epoch takes 1020 seconds, or 17 minutes, using 

the CPU, and 52 seconds for each epoch using the GPU. 

Considering the difference in the time required for each 

epoch according to the playtime, the size of the input file greatly 

affects the execution time of the program, and the larger the size 

of the input file, the longer the execution time of the program. 

B. Similarity to the Original 

A neural network model analyzes patterns from input MIDI 
files and learns the patterns to create new MIDI files. Adjusting 
the way how the model learns can make a huge difference to the 
output. We wanted to avoid overfitting by referencing the 
original MIDI file too much, and we also wanted to avoid having 
too little similarity by referencing the original MIDI file too less. 
To do this, we scored the similarity score for each MIDI output 
and compared the scores between each epoch. The equation we 
used to calculate the similarity of the output MIDI file is: 

 similarity = |I ∩ O| / |I ∪ O| () 

where I is a set of input MIDI file sequences and O is a set of 

output MIDI file sequences. Each sequence has the 

information of notes in the MIDI file. This equation finds the 

intersection of the two sets and divides it by the union of the 

two sets. In other words, this equation finds how many 

different notes contains among whole notes. We repeated this 

calculation until finishing comparing all input files and output 

files and will find the average number of similarity scores. 
 

 

Fig. 9. Similarity Score for Each Epoch 

Fig 9 shows the similarity score for each epoch. The blue 

line represents the average similarity score, and the box plot 

shows the median and variance of similarity scores. We 

expected that the lowest similarity score would come out 

when the number of epochs is 50 and 100. However, contrary 

to our expectations, the lowest similarity score came out when 

the number of epochs was 250 and 500, and the highest 
similarity score came out when the number of epochs was 50 

and 100. 

We analyzed the effect of the number of epochs on the 

learning of the neural network through graphs. As the number 

of epochs increases from 50 to 100, the neural network shows 

a pattern that closely resembles the original MIDI file due to a 

lack of training. This is a big reason for the sharp drop in 

similarity scores as epochs increase from 100 to 250 and 500. 

When the number of the epoch is 250 and 500, they learn the 

pattern more than when the number of the epoch is 100. 

However, the training is still not enough, so the similarity 

score is low. When the number of epochs reaches 1000, the 
neural network learns enough from the original MIDI file, and 

based on this, it can make good use of it when outputting a 

new MIDI file. This causes the similarity score to rise again as 

the number of epochs becomes 1000. 

Our experiment found that when the number of epochs 

was 1000, the optimal MIDI file was derived by learning the 

pattern of the original MIDI file well. A sufficient number of 

epochs are required for the neural network to output a correct 

result through sufficient training. 

 

C. Rhythm, Notes, and Techniques 

 

Fig. 10. Note sequence of a MIDI file generated with Tchaikovsky’s songs in 

50 epochs 

 

Fig. 11. Note sequence of a MIDI file generated with Tchaikovsky’s songs in 

1000 epochs 

 

Fig. 12. Note sequence of a MIDI file generated with Schumann’s songs in 50 

epochs 

 

Fig. 13. Note sequence of a MIDI file generated with Schumann’s songs in 

1000 epochs 

Fig 10 and Fig 11 show a note sequence of MIDI files 

generated with Tchaikovsky’s songs which have 37.11 

minutes of playtime in total. Fig 12 and Fig 13 show a note 

sequence of MIDI files generated with Schumann’s songs 

which have 54.8 minutes of playtime in total. Fig 10 and Fig 

12 show a note sequence of a MIDI file generated with 50 
epochs while Fig 11 and Fig 13 show a note sequence of a 

MIDI file generated with 1000 epochs. 

  

  

  

  

  

  

                  

  

  

  

  

  

  

                    

  

  

  

  

  

  

               

  

  

  

  

  

  

                 



Comparing the shape of the note sequence in Fig 10 and 

Fig 11 with the shape of the note sequence in Fig 12 and Fig 

13, the note sequences in Fig 12 and Fig 13 use more varied 

notes. Also, comparing the shape of the note sequence in Figs 

10 and Figs 12 with the shape of the note sequence in Figs 11 
and Figs 13, the shape of the note sequence in Figs 11 and 

Figs 13 is more complex, and various patterns are observed. 

By comparing and analyzing the differences in the note 

sequences shown in Fig 10 to Fig 13, we found how MIDI 

files could have a more complicated pattern: 

• When the number of epochs is the same, the output MIDI 
file could have a more complicated pattern when the 
neural network model had a greater size of input files. 

• When the input files are the same, the output MIDI file 
could have a more complicated pattern when the neural 
network model had a greater number of epochs. 

V. DISCUSSION, CONCLUSION, AND FUTURE WORK 

A. Discussion and Conclusion 

To build a more effective neural network model, we 

utilized LSTMs and an autoencoder. We found that learning 

and training did not work well when we utilized only LSTMs 

in our neural network model, and most of the output MIDI 
files consisted of only one note. By using LSTMs and 

autoencoder together in the neural network model, better 

output was generated compared to using LSTM alone. 

We used the neural network we built to learn and train 

various classic MIDI files and output a new MIDI file. In this 

process, we found that the learning and training time is greatly 

affected by the number of epochs and the size of the input 

MIDI files, and the time can be greatly reduced depending on 

the performance of the CPU or GPU.  

A small number of epochs will have an insufficient 

number of recurrences to analyze the pattern from the original 
MIDI files, so the output MIDI file is too monotonous. On the 

other hand, a sufficiently large number of epochs can output a 

sufficiently learned and trained MIDI file, which sounds like 

the original songs but has its own pattern and has more diverse 

notes and more complex scales. 

B. Music Theory and MIDI Improvement 

In this study, we mainly focused on learning, training, and 

outputting note sequences from input MIDI files. In follow-up 

research, if we can train our neural network by dealing with 

variation, tempo, or chords from MIDI files in more depth, we 

expect to be able to obtain a MIDI file that significantly 

improved qualitatively. This will likely involve an alternate 

representation to our current one but could offer huge 

improvements to our outputs. 

Another consideration is the addition of music theory to 

better define a fitness function. Currently, an outputs rating is 

given based on its similarity to the input. This is suboptimal 
since our main goal is to generate new music, rather than 

mimic the input. Thus, the inclusion of music theory could add 

more metrics to better identify the quality of the output. 

C. More Epoch and More Improved Network 

Moreover, the most difficult part of this study is that it 

takes too much time to create a single MIDI file. It was a time-

consuming task that the CPU couldn't handle, so we relied 

mostly on the GPU to run the program. However, even with 

GPU, it takes quite a long time when the number of epochs is 

1000. For this reason, 1000 epochs were the largest and most 

realistic number of epochs we could try. However, we would 

like to run the program with more epochs, as we have found 

that applying a higher number of epochs produces better-

quality MIDI files.  
To do this, we need to either utilize a GPU with better 

performance or build a more effective recurrent neural 

network model. Since neural networks are a vast field of 

research, we can try various network configurations.  

For example, we can consider introducing evolutionary 

algorithms, genetic algorithms, or particle swarm optimization 

as in other previous studies. This would allow the testing of 

numerous different recurrent models to find which is optimal 

for our use case. If we do this, we expect that our model could 

generate a more diverse and advanced form of MIDI outputs 

compared to the outputs of our existing models. We expect 
that it is possible to build a recurrent neural network for music 

composition with better performance than the recurrent neural 

network we designed. 
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