
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Generate A New Classical Song Using Recurrent

Neural Network

Jihun Kim

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

Knoxville, USA
jkim172@vols.utk.edu

Jonathan Skeen

Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville
Knoxville, USA

jskeen6@vols.utk.edu

Abstract—The goal of this paper is to identify the potential of

using neural networks for music generation. We chose the classical

music genre as our input. Inputs were sorted by the artist; thus,

outputs were created based on a particular artist. We used an

encoded MIDI representation of the input and produced a single

MIDI representation as output. Our model was set up using the

TensorFlow library and is a recurrent neural network, consisting

of an autoencoder and LSTM layers. We ran various epochs to

identify the ideal training range. Our results were positive overall.

Due to the simplicity of the input representation, the output was

also relatively simple. However, our output exhibits a strong

correlation to the input as well as evidence of the new music

generation.

Keywords—Recurrent Neural Network, Long Short-Term

Memory, Music Generation, Artificial Intelligence, MIDI,

TensorFlow

I. INTRODUCTION AND MOTIVATION

Over the past decade, and even more so recently, there have
been attempts to apply Artificial Intelligence (AI) in various
fields, such as interactive artificial intelligence services or
drawing pictures using input keywords. The results of these
attempts have left a strong impression on people and have
proved that AI-related technologies have advanced considerably
in the past decade. With this in mind, we thought about the field
of composition. As a new picture is created by learning a certain
pattern from various pictures, we thought the same thought
process could be applied to music composition; create a new
song by learning a certain pattern from various songs. We
believe that if this is possible, it could produce revolutionary
changes in the field of music production.

With this thought in mind, we wondered if AI could analyze
existing songs and compose new music which would be better
than that of human composition. Just as AI could generate high-
quality pictures, could it also generate high quality music. We
thought it would be best to use neural networks to learn patterns
and create new ones. In this study, we aimed to find out whether
a song generated by a neural network could be comparable to a
song written by a human.

 In this project, we used a recurrent neural network (RNN)
consisting of an autoencoder to create a model that can identify
patterns of existing classical songs and create new classical
songs using the patterns. With this model, we input various
classic songs as MIDI files and output a new classical song as

MIDI files. We tried to figure out how much the quality of songs
produced by this model increased as we increased the number of
epochs of this model.

During the experiment on this project, we found that in order
to build an effective neural network, we need to build a neural
network model using long short-term memory (LSTM) as well
as an autoencoder to create a MIDI file consisting of more than
just one note. Furthermore, we found that MIDI files were
created using more diverse notes and complex scales when using
a larger number of epochs.

II. RELATED WORK

The music industry is very large and can offer life-changing
success. This has led many people to consider the helpfulness of
artificial intelligence pertaining to music generation. Thus, there
was a substantial amount of related work available to us
throughout this process.

Johnson [7] studied the representation of MIDI files as 2D
binary arrays. We took the most inspiration for the encoding and
decoding of data. This simple setup allowed for a much easier
approach to the project and allowed for more focus on the
network itself rather than encoding and decoding data. A
downside to this approach is the lack of complexity we were able
to represent. Music has complex events happening almost
constantly. This includes changing tempos, incorporating
melodies, and many other things. This approach limits many
elements of the piece, simply because we are only able to record
notes.

Eck and Schmidhuber [1] established the effectiveness of
using Long Short-Term Memory (LSTM) units within recurrent
neural networks. They used LSTM to train their model by
learning the chords or melodies of a song, which allows it to
learn and play long-form musical melodies and create stronger
correlations across songs. We were inspired by this study on
how to utilize LSTMs. Going further from their approach, we
tried to build a better-trained neural network model by
leveraging LSTM's layer count adjustment and repeat vectors.

The use of other types of networks has also been introduced
and tested. Gunawan, Iman, and Suhartono [4] studied the use
of gated recurrent units (GRUs) and incorporated them into an
artificial music generation test. GRUs operate in a somewhat
similar fashion to LSTMs in that they attempt to capture
temporal qualities while avoiding the inclusion of a memory cell.

They built their RNN model using LSTMs and GRUs, and fed
MIDI files into the model, sorted by the era in which the songs
were written, such as baroque, classical, and romantic. Input
MIDI files are encoded, learned, and trained. And they evaluate
the output of their model using accuracy. This series of
processes has been a great inspiration for establishing our model
construction and evaluation methods. Based on their research,
we also incorporated elements such as autoencoder and repeat
vector into our model and classified the input songs according
to their composers rather than according to a specific era.

AMT identifies pitch and models the acoustic signal for it.
To build a more effective symbolic music prediction system
utilizing AMT, Sigtia et al. [2] applied RNN. The resulting
model was able to make high-level symbolic predictions and
allowed the construction of more efficient algorithms.

Chuang and Su [5] used RNNs for beat tracking, as opposed
to music generations. Extract information such as namely onset
time, offset time (or note duration), and pitch value from MIDI
data and train it through a recurrent neural network. In this
process, they also utilized LSTM. Compared to the previous
models, it showed excellent beat-tracking ability, but this also
showed limited performance.

Yang, Chous, and Yang [9] involved using convolutional
neural networks (CNNs) and generative adversarial networks
(GANs). This method also produced positive results and
allowed us to consider other designs for our network (i.e., the
inclusion of an auto-encoder).

Colombo et al[3] involved separating notes from melodies to
improve the long-range quality of the music piece. They
analyzed the pitch and duration of the song and encoded them as
1's and 0's. The information collected in this way is learned in
multi-layers in RNN and used for model training. They compare
the score of the original song and the model's song, showing how
well the model followed the original song's pattern and
composed a new song.

Samuel and Pilat [6] attempted the incorporation of recurrent
neural networks with multi-instrumental music. It extracts
meters, keys, and chords from MIDI files, processes them, and
inputs them into the RNN model. Since they want to use a
variety of instruments, the input values have a much more
complex form than other studies, and the fact that each
instrument has a small input value seems to have made the
research difficult. Still, their neural network model generated
well-evaluated songs. We want to extract information from the
MIDI files of several classical songs, focusing on just one
instrument. By doing so, it is expected that it will be simpler and
easier to input information into our model.

Chen and Miikkulainen[8] combined evolutionary
algorithms and recurrent neural networks for their study. In
their study, they used neural networks to generate melodies and
applied evolutionary algorithms to generate better melodies. To
apply the evolutionary algorithm, the fit function for pitch and
rhythm was utilized. Their system worked quite well, and the
evolutionary algorithm followed the constraints faithfully
while generating better melodies. However, expressions such
as dotted notes, rests, and chords were omitted from their
results. The lack of harmony produced results that were good

for each measure but not satisfactory for the overall
composition.

Sheikholharm et al [10] combined genetic algorithms and
recurrent neural networks in their research. A fitness function
was also applied for the utilization of genetic algorithms. They
utilized pitches and durations of notes via genetic algorithms and
recurrent neural networks to form new melodic passages.
Genetic algorithms have formed crossovers and mutations, and
these mutations include various variations such as changing
adjacent notes, transposing octaves, inverting groups of notes,
and changing the duration of notes. The music thus created
forms a new form of music while still following the pattern of
the original music.

III. METHOD

A. Learn from Others

Before building a neural network model that analyzes

various music files and outputs new music files, we read

papers related to this topic to gain a better understanding of

this topic and to see how others have approached it. As a

result of reading various papers and analyzing the subject, it

was found that there is a technique commonly used in various

papers, and I was sure that we could create our bio-inspired

model using this.

From our research, we concluded that a recurrent neural

network was the most optimal solution for our goal. This is
because recurrent neural networks use outputs from the

previous time step as inputs to the current time step. This is

important because musical notes between different time steps

always have some level of correlation. Thus, if a recurrent

neural network can learn certain patterns, it should be able to

generate a somewhat pleasant output.

Fig. 1. Recurrent Neural Networks(RNNs) [4]

Another inspiration was the use of LSTMs. These

modules have a memory cell within them and essentially

work in tandem with a recurrent neural network to produce a

more connected output. Since LSTMs operate with a memory

cell, there is some recollection of what the previous state
was. This means an LSTM can remember its previous output

and modify the current output accordingly. This improves the

correlation effect and when paired with the characteristics of

a recurrent neural network should provide a better output.

Fig. 2. Long short-term memory (LSTM) diagram [4]

The last piece to our network was the addition of an

autoencoder. Autoencoders operate by compressing and

decompressing data, allowing for both pattern recognition as

well as generative output. These are both valuable properties

of a music generator model because we want to produce a new
musical piece while still having it inspired by the original input.

Fig. 3. Auto-encoder diagram[11]

We were inspired by the various models mentioned above.
By reading various papers related to the research topic, we

have improved our understanding of the structure of MIDI

files and have been able to think about how our neural network

model can utilize MIDI files. We also learned that LSTMs and

autoencoders can be used to build more effective neural

networks.

B. Overall Process of Our Model

We used Python's Mido library as our interface with

MIDI files and the TensorFlow library to build our neural

network. Using the Mido, Numpy, and TensorFlow libraries,

we were able to create a simple recurrent neural network.

TABLE I. NUMBER OF INPUT MIDI FILES

Name of Composers Number of MIDI Files Total Play Time

(minutes)

Tchaikovsky 12 37.11

Mendelssohn 15 37.40

Clementi 17 38.11

Schumann 24 54.80

Haydn 21 69.25

Beethoven 29 182.75

We wanted to input classical songs from various

composers into the RNN model in the form of MIDI files.

Also, we wanted to see if our neural network model can catch

the features of each composer's songs. Therefore, we

categorized MIDI files by composer and inputted each

composer's MIDI file.

This model stores information about notes and chords in
vectors from each incoming MIDI file. The input information

is encoded in the form of a 2D binary vector so that it can be

used in the neural network. This encoded information is used

to train the RNN model.

C. First Attempt to Build a Model

Fig. 4. Early Recurrent Neural Network Model

To build our RNN model, we used Long Short-Term

Memory (LSTM) layers. This model has the advantage of

allowing outputs to be reused as inputs. LSTM networks can

maintain a recollection of its past outputs, which has the

advantage of helping to maintain the flow and rhythm of a

song and improving the overall quality of the song.

The neural network built in this way learns patterns from

various MIDI files. For more effective training, the Adam

optimizer was used. Moreover, the difference in the results

was checked by adjusting the number of epochs which

determines the number of recurrences. The trained neural

network outputs a 2D binary vector, and we adjusted it to

create a song of an appropriate length. The 2D binary vector

output in this way is converted into a MIDI file and output as

music that everyone can hear.
However, our early model was not very good at finding

patterns from MIDI files and would always output songs with

only one note regardless of the number of epochs.

D. Second Attempt to Build a Model

Fig. 5. Improved Recurrent Neural Network Model

Fig. 6. Overall Process of Creating a New MIDI File

We recognized that we were missing an important part of

building neural networks. Therefore, we consulted with Dr.

Schuman to get advice to improve our neural network model.
She recommended using an autoencoder for our neural

network model.

Autoencoders go through the process of compressing and

decompressing information to learn patterns. The autoencoder

applied to our model starts with 1000 layers, compresses to

100 and 10 layers, and then decompresses to 100 and 1000

layers again, learning the patterns of MIDI files. Also, we

used Repeat Vector which repeats the input n times to add an

extra dimension to the dataset. In our new model, we used 64

layers of LSTM which compressed to 32 layers and

decompressed to 64 layers. Using autoencoder, LSTM, and
repeated vector, we could build a better recurrent neural

network model.

Our improved model was able to create songs using

multiple notes rather than just one. Also, compared to the

previous model, it analyzed patterns from input MIDIs well.

IV. RESULTS

A. Time to Generate a New MIDI File

Fig. 7. Time Consumed by Number of Epoches in CPU and GPU

Our model using RNN is highly influenced by the number

of epochs, which is the number of recurrences of the neural
network. Using TensorFlow, users can decide whether to use

CPU or GPU when running a neural network program. There

is a significant difference in performance depending on using

CPU or GPU, and GPU runs a program faster than the CPU

does in every case.

Fig 7 shows the average time until the program is done at

each epoch when using CPU and GPU. When the number of

the epoch is 50, it takes an average of 94.5 minutes, or 1.5

hours, to complete the program using the GPU, while it takes

an average of 315 minutes, or 5.25 hours, to complete the

program using the CPU. When the number of the epoch is

1000, it takes an average of 301 minutes, or 5 hours, to
complete the program using the GPU, while it takes an

average of 6305 minutes, or 105 hours, to complete the

program using the CPU.

Considering the difference in running time between 50

epochs and 1000 epochs, the execution time of the program is

greatly affected by the number of epochs.

Fig. 8. Time Consumed by Total Play Time of Input MIDIs in CPU and GPU

Even if you run the program with the same number of

epochs, the running time of the program can vary greatly

depending on the playtime of the MIDI file, i.e., the size of the

input files.

Fig 8 shows the running time of each epoch depending on
the total playtime of the input files when running the program

using the CPU and GPU. When a MIDI file with a total

playtime of 37 minutes is input into the program, each epoch

takes 150 seconds, or 2 minutes 30 minutes, using the CPU and

9.5 seconds for each epoch using the GPU. When a MIDI file

with a total playtime of 182.75 minutes is input into the

program, each epoch takes 1020 seconds, or 17 minutes, using

the CPU, and 52 seconds for each epoch using the GPU.

Considering the difference in the time required for each

epoch according to the playtime, the size of the input file greatly

affects the execution time of the program, and the larger the size

of the input file, the longer the execution time of the program.

B. Similarity to the Original

A neural network model analyzes patterns from input MIDI
files and learns the patterns to create new MIDI files. Adjusting
the way how the model learns can make a huge difference to the
output. We wanted to avoid overfitting by referencing the
original MIDI file too much, and we also wanted to avoid having
too little similarity by referencing the original MIDI file too less.
To do this, we scored the similarity score for each MIDI output
and compared the scores between each epoch. The equation we
used to calculate the similarity of the output MIDI file is:

 similarity = |I ∩ O| / |I ∪ O| ()

where I is a set of input MIDI file sequences and O is a set of

output MIDI file sequences. Each sequence has the

information of notes in the MIDI file. This equation finds the

intersection of the two sets and divides it by the union of the

two sets. In other words, this equation finds how many

different notes contains among whole notes. We repeated this

calculation until finishing comparing all input files and output

files and will find the average number of similarity scores.

Fig. 9. Similarity Score for Each Epoch

Fig 9 shows the similarity score for each epoch. The blue

line represents the average similarity score, and the box plot

shows the median and variance of similarity scores. We

expected that the lowest similarity score would come out

when the number of epochs is 50 and 100. However, contrary

to our expectations, the lowest similarity score came out when

the number of epochs was 250 and 500, and the highest
similarity score came out when the number of epochs was 50

and 100.

We analyzed the effect of the number of epochs on the

learning of the neural network through graphs. As the number

of epochs increases from 50 to 100, the neural network shows

a pattern that closely resembles the original MIDI file due to a

lack of training. This is a big reason for the sharp drop in

similarity scores as epochs increase from 100 to 250 and 500.

When the number of the epoch is 250 and 500, they learn the

pattern more than when the number of the epoch is 100.

However, the training is still not enough, so the similarity

score is low. When the number of epochs reaches 1000, the
neural network learns enough from the original MIDI file, and

based on this, it can make good use of it when outputting a

new MIDI file. This causes the similarity score to rise again as

the number of epochs becomes 1000.

Our experiment found that when the number of epochs

was 1000, the optimal MIDI file was derived by learning the

pattern of the original MIDI file well. A sufficient number of

epochs are required for the neural network to output a correct

result through sufficient training.

C. Rhythm, Notes, and Techniques

Fig. 10. Note sequence of a MIDI file generated with Tchaikovsky’s songs in

50 epochs

Fig. 11. Note sequence of a MIDI file generated with Tchaikovsky’s songs in

1000 epochs

Fig. 12. Note sequence of a MIDI file generated with Schumann’s songs in 50

epochs

Fig. 13. Note sequence of a MIDI file generated with Schumann’s songs in

1000 epochs

Fig 10 and Fig 11 show a note sequence of MIDI files

generated with Tchaikovsky’s songs which have 37.11

minutes of playtime in total. Fig 12 and Fig 13 show a note

sequence of MIDI files generated with Schumann’s songs

which have 54.8 minutes of playtime in total. Fig 10 and Fig

12 show a note sequence of a MIDI file generated with 50
epochs while Fig 11 and Fig 13 show a note sequence of a

MIDI file generated with 1000 epochs.

Comparing the shape of the note sequence in Fig 10 and

Fig 11 with the shape of the note sequence in Fig 12 and Fig

13, the note sequences in Fig 12 and Fig 13 use more varied

notes. Also, comparing the shape of the note sequence in Figs

10 and Figs 12 with the shape of the note sequence in Figs 11
and Figs 13, the shape of the note sequence in Figs 11 and

Figs 13 is more complex, and various patterns are observed.

By comparing and analyzing the differences in the note

sequences shown in Fig 10 to Fig 13, we found how MIDI

files could have a more complicated pattern:

• When the number of epochs is the same, the output MIDI
file could have a more complicated pattern when the
neural network model had a greater size of input files.

• When the input files are the same, the output MIDI file
could have a more complicated pattern when the neural
network model had a greater number of epochs.

V. DISCUSSION, CONCLUSION, AND FUTURE WORK

A. Discussion and Conclusion

To build a more effective neural network model, we

utilized LSTMs and an autoencoder. We found that learning

and training did not work well when we utilized only LSTMs

in our neural network model, and most of the output MIDI
files consisted of only one note. By using LSTMs and

autoencoder together in the neural network model, better

output was generated compared to using LSTM alone.

We used the neural network we built to learn and train

various classic MIDI files and output a new MIDI file. In this

process, we found that the learning and training time is greatly

affected by the number of epochs and the size of the input

MIDI files, and the time can be greatly reduced depending on

the performance of the CPU or GPU.

A small number of epochs will have an insufficient

number of recurrences to analyze the pattern from the original
MIDI files, so the output MIDI file is too monotonous. On the

other hand, a sufficiently large number of epochs can output a

sufficiently learned and trained MIDI file, which sounds like

the original songs but has its own pattern and has more diverse

notes and more complex scales.

B. Music Theory and MIDI Improvement

In this study, we mainly focused on learning, training, and

outputting note sequences from input MIDI files. In follow-up

research, if we can train our neural network by dealing with

variation, tempo, or chords from MIDI files in more depth, we

expect to be able to obtain a MIDI file that significantly

improved qualitatively. This will likely involve an alternate

representation to our current one but could offer huge

improvements to our outputs.

Another consideration is the addition of music theory to

better define a fitness function. Currently, an outputs rating is

given based on its similarity to the input. This is suboptimal
since our main goal is to generate new music, rather than

mimic the input. Thus, the inclusion of music theory could add

more metrics to better identify the quality of the output.

C. More Epoch and More Improved Network

Moreover, the most difficult part of this study is that it

takes too much time to create a single MIDI file. It was a time-

consuming task that the CPU couldn't handle, so we relied

mostly on the GPU to run the program. However, even with

GPU, it takes quite a long time when the number of epochs is

1000. For this reason, 1000 epochs were the largest and most

realistic number of epochs we could try. However, we would

like to run the program with more epochs, as we have found

that applying a higher number of epochs produces better-

quality MIDI files.
To do this, we need to either utilize a GPU with better

performance or build a more effective recurrent neural

network model. Since neural networks are a vast field of

research, we can try various network configurations.

For example, we can consider introducing evolutionary

algorithms, genetic algorithms, or particle swarm optimization

as in other previous studies. This would allow the testing of

numerous different recurrent models to find which is optimal

for our use case. If we do this, we expect that our model could

generate a more diverse and advanced form of MIDI outputs

compared to the outputs of our existing models. We expect
that it is possible to build a recurrent neural network for music

composition with better performance than the recurrent neural

network we designed.

REFERENCES

[1] D. Eck and J. Schmidhuber, “A First Look at Music Composition using
LSTM Recurrent Neural Networks,” IDISA Research Report. [Online].

Available: https://people.idsia.ch/~juergen/blues/IDSIA-07-02.pdf

[2] S. Sigtia, E. Benetos, N. Boulanger-Lewandowski, T. Weyde, A. S.
d'Avila Garcez and S. Dixon, "A hybrid recurrent neural network for

music transcription," 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia,

2015, pp. 2061-2065, doi: 10.1109/ICASSP.2015.7178333.

[3] F. Colombo, S. Muscinelli, A. Seeholzer, J. Brea, and W. Gerstner,
“Algorithmic Composition of Melodies with Deep Recurrent Neural

Networks.” Available: https://arxiv.org/pdf/1606.07251.pdf

[4] A. A. S. Gunawan, A. P. Iman, and D. Suhartono, “Automatic Music

Generator Using Recurrent Neural Network,” International Journal of
Computational Intelligence Systems, vol. 13, no. 1, p. 645, 2020, doi:

https://doi.org/10.2991/ijcis.d.200519.001.

[5] Y. -C. Chuang and L. Su, "Beat and Downbeat Tracking of Symbolic
Music Data Using Deep Recurrent Neural Networks," 2020 Asia-Pacific

Signal and Information Processing Association Annual Summit and

Conference (APSIPA ASC), Auckland, New Zealand, 2020, pp. 346-352.

[6] D. Samuel and M. Pilát, "Composing Multi-Instrumental Music with

Recurrent Neural Networks," 2019 International Joint Conference on
Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1-8, doi:

10.1109/IJCNN.2019.8852430.

[7] D. Johnson, “Composing Music With Recurrent Neural
Networks,” Daniel D. Johnson, Aug. 03, 2015.

https://www.danieldjohnson.com/2015/08/03/composing-music-with-

recurrent-neural-networks/

[8] C. . -C. J. Chen and R. Miikkulainen, "Creating melodies with evolving

recurrent neural networks," IJCNN'01. International Joint Conference on
Neural Networks. Proceedings (Cat. No.01CH37222), Washington, DC,

USA, 2001, pp. 2241-2246 vol.3, doi: 10.1109/IJCNN.2001.938515.

[9] L.-C. Yang, S.-Y. Chou, and Y.-H. Yang, “MidiNet: A Convolutional
Generative Adversarial Network for Symbolic-domain Music

Generation,” arXiv:1703.10847 [cs], Jul. 2017, Available:

https://arxiv.org/abs/1703.10847

[10] P. Sheikholharam and M. Teshnehlab, "Music Composition Using
Combination of Genetic Algorithms and Recurrent Neural Networks,"

2008 Eighth International Conference on Hybrid Intelligent Systems,

Barcelona, Spain, 2008, pp. 350-355, doi: 10.1109/HIS.2008.46.

[11] S. Flores, “Variational autoencoders are beautiful,” Variational
Autoencoders are Beautiful | Blogs,

https://www.compthree.com/blog/autoencoder/ (accessed May 10, 2023).

